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Abstract: Most video surveillance systems use both RGB and infrared cameras, making it a vital technique to re-identify a
person cross the RGB and infrared modalities. This task can be challenging due to both the cross-modality variations caused by
heterogeneous images in RGB and infrared, and the intra-modality variations caused by the heterogeneous human poses,
camera position, light brightness etc. To meet these challenges, a novel feature learning framework, hard pentaplet and identity
loss network (HPILN), is proposed. In the framework existing single-modality re-identification models are modified to fit for the
cross-modality scenario, following which specifically designed hard pentaplet loss and identity loss are used to increase the
accuracy of the modified cross-modality re-identification models. Based on the benchmark of the SYSU-MM01 dataset,
extensive experiments have been conducted, showing that the authors’ method outperforms all existing ones in terms of
cumulative match characteristic curve and mean average precision.

1 Introduction
Person re-identification (Re-ID) is the technique of identifying an
individual from a surveillance camera previously shown up from
other non-overlapping cameras [1], which has recently become a
research focus due to its practical importance. Typical Re-ID uses
only RGB cameras, i.e. identifying an individual from RGB
cameras based on previously recorded RGB camera videos/images,
and hence the name RGB–RGB Re-ID [2–6]. However, in many
cases, both RGB and infrared (IR) cameras are used, and
consequently it becomes necessary to develop Re-ID methods
capable of cross RGB and IR modalities, that is, either identifying
an individual from RGB cameras based on previously recorded IR
camera videos/images or identifying an individual from IR cameras
based on previously recorded RGB cameral videos/images, both
being referred to as RGB–IR Re-ID [7–11].

RGB–IR Re-ID has not been well studied to date, with few
literature being reported. To name just a few, in [7], a deep zero-
padding network is proposed to automatically extract the common
features between RGB and IR modalities. In [8], a dual-path
convolutional neural network (CNN) with top-ranking loss is
proposed, which simultaneously handles both the cross- and intra-
modality variations. In [9], a cross-modality generative adversarial
network (cmGAN) approach with cross-modality triplet loss is

proposed. In [10], a single image input method is proposed to
simplify the CNN structure. In [11], a Dual-level Discrepancy
Reduction Learning (D2RL) scheme is proposed to decompose the
mixed modality and appearance discrepancies. A dedicated dataset
for RGB–IR Re-ID called SYSU-MM01 has been collected [7], as
shown in Fig. 1. 

RGB–IR Re-ID is challenging mainly owing to the great cross-
and intra-modality variations as illustrated in Fig. 2. By ‘cross-
modality variations’ we mean that RGB and IR images are
essentially heterogeneous as the former consists of three channels
of colour information while the latter only one. By ‘intra-modality
variations’ we mean that the image quality including the camera
view, resolution, light brightness, human body pose etc. can still be
significantly different even within the same RGB or IR modality,
as long as multiple heterogeneous cameras and different
monitoring scenarios are involved.

To meet the above challenges, a novel feature learning
framework based on hard pentaplet and identity loss network
(HPILN) is proposed. Specifically, we select existing RGB–RGB
Re-ID models as the feature extraction module in our framework
[2–6], and then design the hard pentaplet (HP) loss to compensate
for the deficiencies of the RGB–RGB Re-ID network in the cross-
modality Re-ID task. The HP loss considers the following two
aspects: (i) a pentaplet loss, consisting of the global and cross-
modality triplet loss where the former can simultaneously handle
cross- and intra-modality variations and the latter can increase the

Fig. 1  RGB and IR images in SYSU-MM01 dataset. The first, second,
fourth, fifth and third, sixth rows are captured by RGB and IR cameras,
respectively

 

Fig. 2  Cross- and intra-modality variations in RGB–IR Re-ID. Solid and
dotted lines are for the RGB and IR domains, respectively
(a) Cross-modality variations, (b) Intra-modality variations
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ability to handle cross-modality variations. (ii) An improved hard
mining sampling method by selecting the hardest global triplet and
the hardest cross-modality triplet to form the hardest pentaplet pair
and to contribute to the convergence of the CNN.

The main contributions of this study can be summarised as
follows.

• An end-to-end feature learning framework is proposed yielding
the state-of-the-art performance on the RGB–IR Re-ID dataset
SYSU-MM01.

• The proposed RGB–RGB Re-ID model migration to RGB–IR
Re-ID task provides a superior feature extraction method for
future improvements.

• A novel loss function called HP loss is proposed, which is
capable of simultaneously handling the cross- and intra-modality
variations in RGB–IR Re-ID.

The remainder of the paper is organised as follows. Section 2
discusses related works on Re-ID. Our method is detailed in
Section 3, which is then verified experimentally in Section 4.
Section 5 concludes the paper.

2 Related works
In this section, we discuss related works on single-modality and
multi-modality Re-ID.

2.1 Single-modality person Re-ID

In the single-modality person Re-ID study, most attentions have
been paid to RGB–RGB Re-ID.

For RGB–RGB Re-ID, hand-designed descriptors are often
used to extract pedestrian features such as colour and texture
information. In [12], pedestrians are segmented from the
background, and then the weighted colour histogram and the
maximally stable colour regions are calculated for the pedestrian
body part. Recently, the mainstream of Re-ID is to design the loss
function and CNNs based on deep learning methods. The design of
the loss function may depend on either metric learning or
representation learning. The purpose of metric learning is to learn
the similarity between two pedestrian images through a deep CNN,
where the similarity is usually represented by the Euclidean
distance. Frequently used metric learning methods include
contrastive loss [13], triplet loss [14], hard triplet (HT) loss [15],
and quadruplet loss [16]. Representation learning uses identity tags

to automatically extract pedestrian representation features,
including identity loss [17] and verification loss [18]. In addition,
three types of special networks have been designed for Re-ID, i.e.
either global-based or part-based or attention-based. Global-based
networks aggregate global-level features into a global vector [2, 4].
Part-based networks divide the pedestrian image into different
parts, and the local feature vectors of different parts are merged
into a vector [3, 5, 6]. Attention-based networks focus on
automatically finding local salient regions for computing deep
features [19, 20]. These existing single-modality Re-ID models
have rarely been applied to RGB–IR Re-ID to date and efforts need
to be taken for such a migration.

2.2 Multi-modality person Re-ID

Existing multi-modality fusion Re-ID focuses on RGB–D modules
[21–23], visible-thermal (VT) modules [8, 24] and RGB–IR
modules [7]. RGB–D Re-ID combines human RGB image and
depth information, and depth information is used to provide more
stable body information to reduce the impact of changed clothes or
extreme illumination on Re-ID. RGB–IR and VT Re-ID are based
on the principle of IR imaging, enabling Re-ID to take place at
night. The difference is that the RGB–IR Re-ID transmits and
collects IR light through the IR camera to obtain IR images, while
the VT Re-ID capturing the heat emitted by the human body to
obtain IR images. However, depth cameras and thermal cameras
are rare in surveillance systems. In contrast, IR cameras have been
widely deployed. Most surveillance cameras in the real world are
visible light cameras during the day and become IR cameras at
night. Therefore, from the perspective of practical applications,
RGB–IR Re-ID can be of more value.

3 Proposed method
This study addresses RGB–IR Re-ID by a feature learning
framework based on HP loss and identity loss as shown in Fig. 3. 
The framework consists of three parts: (i) Re-ID neural network for
feature extraction; (ii) the hard mining sampling method to find
hardest pentaplet pair sets after getting feature embedding; (iii)
hard pentaplet and identity (HPI) loss for feature learning.
Specifically, the Re-ID neural network is taken from the existing
RGB–RGB Re-ID CNN, which can also extract the representation
feature of IR person images. By calculating the Euclidean distance
of the feature embedding, the hard mining sampling method
maximises training and ensures model convergence. The HP loss

Fig. 3  Proposed feature learning framework based HPI loss for RGB–IR Re-ID. The framework consists of three major components: (i) the Re-ID neural
network, which extracts the common features of RGB and IR images; (ii) the hard mining sampling method, which obtains the hardest pentaplet pair sets; (iii)
the HPI loss for feature learning, which consists of pentaplet loss and identity loss. 2PK is the training batch size. In each training batch, P individuals are
randomly selected, and each person randomly selects K RGB images and K IR images. Rectangles of different colours below the image represent the different
elements in the pentaplet pair
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enables the network to handle cross- and intra-modality variations
simultaneously, and the HP loss and the identity loss are integrated
into multiple losses to facilitate the process of feature learning.

3.1 Re-ID neural network

A typical RGB–RGB Re-ID model-based CNN is shown in Fig. 4. 
The CNN part is used as a feature extractor to obtain feature
embedding, allowing different designs in different RGB–RGB Re-
ID models. Most Re-ID models have at least two fully connected
layers (FC-1 and FC-2 for short), where FC-2 is used for identity
loss and the output of FC-1 is used as feature embedding
supervised by ranking loss based on metric learning. Cross entropy
loss and its variants are often used as identity loss, and ranking loss
typically uses a loss function based on metric learning, such as HT
loss. Joint training of identity and ranking loss can learn more
discriminative feature embedding.

In our framework, we slightly adjust the structure of the RGB–
RGB Re-ID model. First, identity loss is usually expressed using
softmax loss, meaning that the dimension of FC-2 has to be
changed to fit for the number of identities in the SYSU-MM01
training set. Second, the ranking loss used in the RGB–RGB Re-ID
model does not consider cross-modality variations. Therefore, we
design a new ranking loss called HP loss, which can better extract
the discriminative features of heterogeneous images, as detailed in
Section 3.2.2.

The modified network has two major advantages: (i) an existing
RGB–RGB Re-ID neural network is used as the feature extraction
module in the RGB–IR Re-ID task. Compared to the classification
model, the customised RGB–RGB Re-ID model can learn more
discriminative features, since the latter is designed by taking
consideration of the person characteristics, such as the spatial
distribution of pedestrian body parts used by the part-based Re-ID
models. (ii) An HP loss is designed as the ranking loss for cross-
modality Re-ID, which considers both the cross- and intra-modality
variations and can, therefore, better learn the common features of
heterogeneous images.

3.2 HP loss

We first introduce the HT loss and then discuss our proposed HP
loss.

3.2.1 HT loss: The HT loss [15] is an improved loss function for
triplet loss [14]. The triplet loss is widely used in person Re-ID,
vehicle retrieval, and face recognition. In the person Re-ID task,
for the anchor image xa in the candidate triplet set
{xi

a, xi
p, xi

n}, i ∈ [1, N], xp is a positive sample image of the same
identity, and xn is a negative sample image of a different identity.
Using CNN as the feature extractor, the image x is mapped into the
d-dimensional Euclidean space. The feature embedding vector has
the form of f (x) ∈ ℝd. The following Euclidean distance between
feature embedding measures the similarity of two images:

d(xi, xj) = ∥ f (xi) − f (xj) ∥2 (1)

The triplet loss is obtained as follows:

Ltrp = ∑
i

N
d xi

a, xi
p 2 − d xi

a, xi
n 2 + α

+
(2)

where [z]+ = max (z, 0). For {xi
a, xi

p, xi
n}, the ith pair of triplets,

d(xi
a, xi

p) represents the Euclidean distance between positive
samples (xi

a, xi
p), and d(xi

a, xi
n) represents the Euclidean distance

between negative samples (xi
a, xi

n). Note that the square of the
Euclidean distance is used for the triplet loss. α is a hyperparameter
that forces the positive and negative sample pairs to separate in the
Euclidean space.

Alexander Hermans et al. proposed a HT loss by improving the
sampling method [15], which improves the training speed and

accuracy in many retrieval tasks. With this loss, each batch
randomly samples P-identity person, and each person randomly
samples K images, thus PK images for each batch. For each image
in the batch, select the hardest positive and negative samples to
form the hardest triplet. The hardest positive sample represents the
positive sample with the maximum Euclidean distance from the
anchor, while the hardest negative sample represents the negative
sample with the minimum Euclidean distance from the anchor. The
HT loss can be expressed as follows:

Lhtrp = ∑
i = 1

P

∑
a = 1

K
all anchor

α + max
p = 1, …, K

d xi
a, xi

p
hardest positive

− min
j = 1, …, P
n = 1, …, K

j ≠ i

d(xi
a, xj

n)

hardest negative +

(3)

Unlike (2), the HT loss does not calculate the square of the
Euclidean distance, thus making the training more stable.

3.2.2 HP loss: As shown in Fig. 5a, the HT loss focuses on
reducing the intra-class distance and increasing the inter-class
distance, which is effective in the conventional retrieval task. 
However, the HT loss does not perform very well in RGB–IR Re-
ID task. As shown in Fig. 2a, the same person in different
modalities can be dissimilar. The HT loss does not consider cross-
modality factors, and hence the training model does not deal well
with cross- and intra-modality variations at the same time.

To address the huge cross- and intra-modality variations in
cross-class or intra-class, we propose a hard global triplet (HGT)

Fig. 4  Typical RGB–RGB Re-ID CNN model. Green and red represent the
unchanged and changed parts, respectively

 

Fig. 5  Geometry representation of HT loss and HP loss in Euclidean
space
(a) The HT loss minimises the distance between the anchor xi

a and a positive xi
p, and

maximises the distance between the anchor xi
a and a negative xi

n, (b) In addition to the
function of HT loss, HP loss can minimise the distance between an anchor xi

a and a

cross-modality positive xi
cp, and maximises the distance between the anchor xi

a and a

cross-modality negative xi
cn
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loss based on a cross-modality batch (cm-batch) structure.
Specifically, in each cm-batch, P individuals are randomly
selected, each person randomly selects K RGB images and K IR
images. For an anchor image xi

a, the sum of cross-modality
negative set xcn and intra-modality negative set xin constitutes the
global negative set xn, and the sum of the cross-modality positive
set xcp and intra-modality positive set xip constitutes the global
positive set xp. The HGT loss is computed as follows:

Lhgt = ∑
i = 1

P

∑
a = 1

2K
all anchor

α + max
p = 1, …, 2K

p ≠ a

d xi
a, xi

p
hardest global positive

− min
n = 1, …, 2K
j = 1, …, P

j ≠ i

d xi
a, xj

n

hardest global negative +

(4)

where α is a hyperparameter, xi
a ∈ xa, xi

p ∈ xp, xi
n ∈ xn, xi

j

represents the ith image of the jth person in the corresponding set
of anchors. For any xi

a in the cm-batch, the hardest global positive
or negative may be the same or different modality.

Although HGT loss can handle cross- and intra-modality
variations at the same time, usually cross-modality variations are
much larger than intra-modality variations. We thus design a hard
cross-modality triplet (HCT) loss to handle cross-modality
variations. The HCT loss is computed as follows:

Lhct = ∑
i = 1

P

∑
a = 1

2K
all anchor

α + max
cp ∈ A

d(xi
a, xi

cp)
hardest cross − modality positive

− min
cn ∈ A

k = 1, …, K
k ≠ i

d(xi
a, xk

cn)

hardest cross − modality negative +

(5)

where A = {1, 2, …, K} for a ≥ K, and A = {K + 1, K + 2, …, 2K}
otherwise. The meaning of xi

j is consistent with (4).
Our proposed HP loss consists of hard global and cross-

modality triplet loss. For an anchor image xi
a in cm-batch, the

hardest global triplet pair {xi
a, xj

p, xk
n} and the hardest cross-

modality triplet pair {xi
a, xh

cp, xt
cn} can be obtained by hard sampling

methods, i.e. combining the hardest triplet pairs above to obtain a
hardest pentaplet pair {xi

a, xj
p, xk

n, xh
cp, xt

cn}. Note that xj
p and xh

cp, xk
n

and xt
cn may be the same image. The HP loss can be expressed as

follows:

Lhp = 1
2 × P × K (Lhgt + Lhct) (6)

As shown in Fig. 5b, using the HP loss the distribution of human
images in Euclidean space is more discriminative. The HP loss has
two major advantages: (i) The HP loss can handle intra-modality
and deeper cross-modality variations simultaneously. (ii) The HP
sampling method uses a limited number of images to generate
sufficient hardest pentaplet pairs, which enriches the training
samples and speeds up model convergence.

3.3 HP with identity loss

We use identity loss to handle intra-class variations. As shown in
Figs. 2a and b, there may be large variations in person images of

the same identity. Given the success of identity loss in cross-
modality Re-ID task, identity loss enables the CNN framework to
extract the identity-specific information to reduce intra-class
variations. We regard the same person in the heterogeneous
modality as the same class, and the identity loss is then expressed
by softmax loss, as follows:

Lid = 1
2 × P × K ∑

i = 1

2PK
− log e f yi

∑ j e f j
(7)

where 2PK is the number of images in cm-batch, f  is designed as
the output vector of the last FC layer, f j, j ∈ [1, H] is the jth part of
class score vector, H is the number of classes, yi is the class label of
the input image xi, and f yi is the class score of xi.

We add identity loss to our framework to learn a more robust
feature representation. HPI loss is combined with HP loss and
identity loss, which can be expressed as follows:

LHPI = Lhp + Lid (8)

4 Experimental results
4.1 Datasets and settings

The publicly available SYSU-MM01 dataset is adopted for
evaluation. This dataset contains 491 identities with 287,628 RGB
images and 15,792 IR images in total, captured by four RGB
cameras (cameras 1, 2, 4, and 5) and two IR cameras (cameras 3
and 6). RGB and IR cameras work in bright and dimly lit
environment, respectively. In addition, cameras 1, 2, 3 and 4, 5, 6
are for indoor and outdoor usages, respectively.

4.2 Evaluation protocol

The SYSU-MM01 dataset contains the training set and the test set,
consisting of 395 and 96 persons, respectively. Note that a person
does not appear in the two sets simultaneously.

In the training stage, all images in the training set can be used
for training. In the test stage, the RGB images are for the gallery
set and the IR images are for the query set. There are two
verification methods: all-search and indoor-search. For the former,
the test set contains all images from indoors and outdoors, while
for the latter, the test set contains only indoor images. For each
method, there are multi-shot and single-shot settings. For every
identity in the gallery set, we randomly select 1/10 images from the
RGB camera as single- and multi-shot setting, respectively. For the
query set, all IR images are selected.

For a given query image, we match it by calculating the
similarity between the images from the query set and the gallery
set. The matching of the Re-ID is performed between cameras at
different positions, and hence the query images will skip the
gallery images from the cameras at the same position. After sorting
the similarities, we use cumulative match characteristic (CMC)
[25] and mean average precision (mAP) to calculate the accuracy.

4.3 Implementation details

We use NVIDIA GeForce 1080Ti graphics cards with Pytorch
computing framework to implement our algorithm. Five RGB–
RGB Re-ID neural networks were used to verify the superiority of
our algorithms: Res-Mid, Multiple Granularity Network (MGN),
Part-based Convolutional Baseline (PCB), Batch Feature Erasing
(BFE), Multi-Level Factorisation Net (MLFN). As shown in
Table 1, the input image size and the output embedding feature
dimension are different due to the difference of the model. The IR
image is padding to three channels, which copies the information
of one channel. Adam optimiser [26] is used to train 10 k iterations.

Since our HP loss requires slightly different cm-batches, we
sample a 2PK batch by randomly sampling P identities, and each
person randomly samples K RGB images and K IR images. In our
experiment, P is set to 8, K is set to 4, and the size of cm-batch is
calculated to be 64. For input images, the methods of random
horizontal flip and random cropping is used to expand the amount
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of data. We set margin α in HP loss in the range [0.3, 0.6, 0.9, 1.2,
1.5, 1.8] and evaluate our method by experimenting with other
hyper-parameters.

4.4 Comparison with the state-of-the-arts

We evaluated our HPILN method against 17 previous methods on
the SYSU-MM01 dataset in Table 2. For performance measure, the
rank-1, -10, -20 accuracies of CMC and mAP are used to show the
clear performance superiority of our HPILN method. The
comparison takes advantage of seven state-of-the-art methods:
zero-padding [7], cmGAN [9], bi-directional dual-constrained top-
ranking (BDTR) [8], inter-channel pair between the visible-light
and thermal images + multi-scale Retinex (IPVT-1 + MSR) [10],
D2RL [11], bi-directional center-constrained top-ranking (eBDTR)
[27] and D-hypersphere manifold embedding (HSME) [28].

In addition, other existing methods are used for comparison,
including handcrafted features such as Histograms of Oriented
Gradient (HOG) [29] and Local Maximal Occurrence (LOMO)
[30], cross-domain models such as Common Discriminant Feature
Extraction (CDFE) [31] and Camera coRrelation Aware Feature
augmenTation (CRAFT) [32], canonical correlation analysis
(CCA) [33], one-stream and two-stream networks [7], and metric
learning method Local Fisher Discriminant Analysis (LFDA) [34].
Most of the results were obtained from the references [7–11, 27,
28].

We use Res-Mid [2], MGN [6], PCB [3], BFE [5], MLFN [4] as
feature extractors in our HPILN method. To our best knowledge,
these models are the best available methods of RGB–RGB Re-ID
in the past two years. Table 3 records their precision on the
Market1501 [35], CUHK03 [36] and DukeMTMC-reID [37, 38]
datasets. 

In Table 2, the results of five rows on the bottom show the
performance of the HPILN method, which applies HPI loss to five
models. It is seen that our method is significantly better than all
existing methods in the SYSU-MM01 benchmark, where the five
models based on HPI loss have higher rank-1, -10, -20 and mAP in
all verification modes and setting than existing methods.
Specifically, the BFE model-based HPI loss performs the best in
most of the indicators, which outperforms the second best method
(D2RL) on all-search single-shot setting in terms of the rank 1 and
mAP metric 12.46% (41.36–28.9) and 13.75% (42.95–29.2),
respectively.

Table 1 Settings for different model training: input image
width and height (W × H), feature dimension (Dim), training
batch size (batch size) and learning rate (Lr)
Model W × H Dim Batch size Lr
Res-Mid 224 × 224 3072 64 3 × 10−4

MGN 128 × 384 2048 64 3 × 10−4

PCB 224 × 224 12,288 64 3 × 10−4

BFE 128 × 256 1024 64 3 × 10−4

MLFN 224 × 224 1024 64 3 × 10−4

 

Table 2 Comparison results on the SYSU-MM01 dataset. Our method exceeds the existing methods on the rank 1, 10, 20 and
mAP metrics
Method All-search single-shot All-search multi-shot Indoor-search single-shot Indoor-search multi-shot

r1 r10 r20 mAP r1 r10 r20 mAP r1 r10 r20 mAP r1 r10 r20 mAP
HOG + Euclidean 2.76 18.25 31.91 4.24 3.82 22.77 37.63 2.16 3.22 24.68 44.52 7.25 4.75 29.06 49.38 3.51
HOG + CRAFT 2.59 17.93 31.50 4.24 3.58 22.90 38.59 2.06 3.03 24.07 42.89 7.07 4.16 27.75 47.16 3.17
HOG + CCA 2.74 18.91 32.51 4.28 3.25 21.82 36.51 2.04 4.38 29.96 50.43 8.70 4.62 34.22 56.28 3.87
HOG + LFDA 2.33 18.58 33.38 4.35 3.82 20.48 35.84 2.20 2.44 24.13 45.50 6.87 3.42 25.27 45.11 3.19
LOMO + CCA 2.42 18.22 32.45 4.19 2.63 19.68 34.82 2.15 4.11 30.60 52.54 8.83 4.86 34.40 57.30 4.47
LOMO + CRAFT 2.34 18.70 32.93 4.22 3.03 21.70 37.05 2.13 3.89 27.55 48.16 8.37 2.45 20.20 38.15 2.69
LOMO + CDFE 3.64 23.18 37.28 4.53 4.70 28.23 43.05 2.28 5.75 34.35 54.90 10.19 7.36 40.38 60.33 5.64
LOMO + LFDA 2.98 21.11 35.36 4.81 3.86 24.01 40.54 2.61 4.81 32.16 52.50 9.56 6.27 36.29 58.11 5.15
one-stream 12.04 49.68 66.74 13.67 16.26 58.14 75.05 8.59 16.94 63.55 82.10 22.95 22.62 71.74 87.82 15.04
two-stream 11.65 47.99 65.50 12.85 16.33 58.35 74.46 8.03 15.60 61.18 81.02 21.49 22.49 72.22 88.61 13.92
zero-padding 14.80 54.12 71.33 15.95 19.13 61.40 78.41 10.89 20.58 68.38 85.79 26.92 24.43 75.86 91.32 18.64
cmGAN 26.97 67.51 80.56 27.80 31.49 72.74 85.01 22.27 31.63 77.23 89.18 42.19 37.00 80.94 92.11 32.76
BDTR 17.01 55.43 71.96 19.66 — — — — — — — — — — — —
eBDTR 27.82 67.34 81.34 28.42 — — — — — — — — — — — —
D-HSME 20.68 62.74 77.95 23.12 — — — — — — — — — — — —
IPVT-1 + MSR 23.18 51.21 61.73 22.49 — — — — — — — — — — — —

D2RL 28.9 70.6 82.4 29.2 — — — — — — — — — — — —

Res-Mid + HPI 40.49 83.61 93.13 41.64 47.70 87.99 95.34 35.15 45.65 90.76 97.77 56.19 50.79 93.03 97.86 46.21
MGN + HPI 39.77 79.78 90.14 41.12 44.86 82.54 91.61 34.88 44.06 87.77 95.59 54.52 50.55 89.99 96.06 44.90
PCB + HPI 33.29 80.66 91.42 35.15 38.55 82.86 92.82 28.16 39.70 88.26 96.68 50.49 46.86 90.31 96.85 40.93
MLFN + HPI 33.34 78.54 89.66 36.13 39.45 83.21 92.45 29.52 36.25 85.07 94.51 47.99 41.99 86.34 95.20 38.43
BFE + HPI 41.36 84.78 94.51 42.95 47.56 88.13 95.98 36.08 45.77 91.82 98.46 56.52 53.05 93.71 98.93 47.48
 

Table 3 Performance of RGB–RGB Re-ID models on Market1501, CUHK03, and DukeMTMC-reID datasets
Method Market1501 CUHK03 DukeMTMC-reID

r1 mAP r1 mAP r1 mAP
Res-Mid 89.87 75.55 43.51 47.14 63.88 80.43
MGN 95.7 86.9 66.8 66 88.7 78.4
PCB 92.4 77.3 61.3 54.2 81.9 65.3
BFE 94.4 85 72.1 67.9 88.7 75.8
MLFN 90 74.3 52.8 47.8 81.0 62.8
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4.5 Effectiveness of fusion loss

To verify the effectiveness of fusion identity loss and HP loss, we
compared the rank-1 precision of identity loss, HP loss and HPI
loss on the SYSU-MM01 dataset. We report the results with five
models in Table 4, and it shows that the combination of identity
loss is effective. It is clear that the RGB–RGB Re-ID models based
on identity loss can also achieve excellent precision, even the Res-
Mid-based identity loss performance is better than the second best
method (D2RL) in rank-1 accuracies. In addition, although HP loss
has shown excellent performance, HPI loss which integrates
identity loss and HP loss further improves the accuracy. We
speculate that the fusion of identity loss further enhances the
feature discrimination of HP loss.

In order to verify the above speculation, we conducted a toy
experiment to illustrate the differences of features in 2D Euclidean
space learned by identity loss, HP loss, and HPI loss, respectively,
shown in Fig. 6. Using only identity loss to train the model, the
learned features are slightly separable, which are not discriminative
enough, since Fig. 6a still shows large cross-modality variations
and small inter-class discrimination. Fig. 6b shows that there is a
large margin between the dot clusters, which means HP loss
learned discriminative large-margin features. For HPI loss
combined with HP loss and identity loss, Fig. 6c shows that the
same classes are clustered together and there is a significant
separation between the different classes. The reason why the HPI
loss performance superior is that HP loss handles the cross- and
intra-modality variations to learn the distinguishing large-margin
features and identity loss assists HP loss to further reduce intra-
class distance.

4.6 Comparison with other advanced loss

To demonstrate the effect of our loss function, we compare our HP
loss and HPI loss with other advanced loss functions in Re-ID,
including HT loss [15], HT with identity (HTI) loss, centre loss

[39], and identity loss [17]. The performance of the contrast
methods was reported in Figs. 7 and 8. 

Results shown in Fig. 7 illustrate that HP loss and HPI loss have
better performance on rank-1 and mAP than other loss functions.
We tested five models, and the rank-1 and mAP of the PCB-based
HPI loss were 22.88% and 16.69% higher than the second loss
(except HP loss), respectively.

Fig. 8 shows the CMC curves of different models under
different losses in the SYSU-MM01 dataset. The CMC curve can
more fully reflect the performance of the model. We tested four
models under the all-search single-shot setting. In all tested
models, HP loss and HPI loss performed better than other losses,
and our method is not only higher than the existing method in
rank-1 but also maintains a lead in ranks 1–50.

The reason why we are better than other methods is that we
consider cross-modality variations to better extract common
features in heterogeneous modality. In addition, we use a more
reasonable image sampling method to balance the number of input
images so that the CNN does not focus on certain modality images.

Table 4 Effectiveness of fusion loss on the SYSU-MM01 dataset. Rank-1 accuracies (%) in all/indoor-search mode and single/
multi-shot setting
Model Loss All-search Indoor-search

Single-shot Multi-shot Single-shot Multi-shot
Res-Mid identity loss 32.68 38.58 37.41 45.23

HP loss 36.06 42.32 40.46 44.08
HPI loss 40.49 47.70 45.65 50.79

MGN identity loss 27.29 31.05 33.47 38.19
HP loss 36.68 41.62 41.95 48.37
HPI loss 39.77 44.86 44.06 50.55

PCB identity loss 11.22 15.67 8.7 12.76
HP loss 26.51 32.40 33.61 40.42
HPI loss 33.29 38.55 39.70 46.86

MLFN identity loss 28.44 33.23 30.19 34.82
HP loss 30.62 35.43 31.28 36.69
HPI loss 33.34 39.45 36.25 41.99

BFE identity loss 25.69 32.02 29.65 36.68
HP loss 38.89 45.69 44.51 52.51
HPI loss 41.36 47.56 45.77 53.05

 

Fig. 6  Comparison among identity loss, HP loss and HPI loss. In this toy
experiment, we modified Res-Mid to learn a 2D feature on a subset of the
SYSU-MM01 dataset. In detail, we set the output of dimension of the last
FC layer as two and visualise the learned features. The five colour points
represent five identity classes, the circular and star shapes represent RGB
modality and IR modality, respectively
(a) Identity loss, (b) HP loss, (c) HPI loss

 

Fig. 7  Performance of different loss functions. We tested rank-1 and mAP
with the all-search multi-shot setting on five models
(a) Rank-1, (b) mAP
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4.7 Analysis of model selection

In HPILN framework, the RGB–RGB Re-ID models were first
adopted as the feature extractor for RGB–IR Re-ID task. We tested
the performance of the classification models and some RGB–RGB
Re-ID models in HPILN framework. The RGB–RGB Re-ID
models include different types: global-based networks, part-based
networks, and attention-based networks. We record the results in
Table 5. 

In the HPILN framework, the RGB–RGB Re-ID model is more
effective for RGB–IR Re-ID tasks than classification models. We
chose Resnet50 [40] and Densenet121 [41] as classification
models, which perform well on ImageNet dataset. From Table 5,
we observed that classification models do not achieve good
accuracy in the HPILN framework compared to the RGB–RGB
Re-ID model. The reason is that the RGB–RGB Re-ID model is
designed for person images. Although IR images and RGB images
are very different, heterogeneous images also have certain common
features, such as body shape and clothing shape. Therefore, the
RGB–RGB Re-ID model performs well in RGB–IR Re-ID tasks.

However, not all RGB–RGB Re-ID models perform well in
RGB–IR Re-ID tasks. We tested two attention-based RGB–RGB
Re-ID models: mudeep [19] and hacnn [20]. From Table 5, mudeep
and hacnn have lower precision on SYSU-MM01. Both mudeep
and hacnn use the attention mechanism which automatically
focuses on local salient areas for computing deep features. We find
that attentional mechanisms are more difficult to train in cross-
modality Re-ID because there are few similar local regions in
heterogeneous images.

4.8 Visualising activation map

To illustrate the effectiveness of our model, we use activation maps
to visualise the features learned by different models. The activation
map is obtained using the Grad-cam method [42]. Specifically, the
feature map of the last convolutional layer is first obtained, and the
weighted sum in the channel dimension is then calculated. The
resulting activation map is superimposed on the original image.

Five models (Res-Mid, MGN, BFE, MLFN, and PCB) are
tested and trained by the HPI, HTI, and identity loss, with the
results being shown in Fig. 9. We find that the model has a strong
response to the human body, especially in significant areas such as
clothes. This shows that the model can automatically exclude
background interference and concentrate on extracting the features
of the human body. Compared with other loss functions, the
models trained by the HPI loss have more similar response
positions on RGB and IR images, meaning that the HPI loss can
better learn the common features of heterogeneous images. In
addition, our method can better extract features since more
discriminative regions are recognised by our method.

5 Conclusion
A novel feature learning framework based on HPILN is proposed
for RGB–IR person Re-ID. In the framework, an existing RGB–
RGB Re-ID model is used as the feature extractor; HP loss is used
to learn the discriminative large-margin features in order to handle
cross- and intra-modality variations and the identity loss are
combined to extract identity-specific information to learn the
separation features. The experimental results show that our method
achieves state-of-the-art performance on SYSU-MM01 dataset.
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